Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Pestic Biochem Physiol ; 200: 105817, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582587

RESUMEN

Thiram is a kind of organic compound, which is commonly used for sterilization, insecticidal and deodorization in daily life. Its toxicology has been broadly studied. Recently, more and more microRNAs have been shown to participate in the regulation of cartilage development. However, the potential mechanism by which microRNA regulates chondrocyte growth is still unclear. Our experiments have demonstrated that thiram can hamper chondrocytes development and cause a significant increase in miR-203a content in vitro and in vivo trials. miR-203a mimic significantly decrease in mRNA and protein expression of Wnt4, Runx2, COL2A1, ß-catenin and ALP, and significantly enhance the mRNA and protein levels of GSK-3ß. It has been observed that overexpression of miR-203a hindered chondrocytes development. In addition, Runx2 was confirmed to be a direct target of miR-203a by dual luciferase report gene assay. Transfection of si-Runx2 into chondrocytes reveals that significant downregulation of genes is associated with cartilage development. Overall, these results suggest that overexpression of miR-203a inhibits the expression of Runx2. These findings are conducive to elucidate the mechanism of chondrocytes dysplasia induced by thiram and provide new research ideas for the toxicology of thiram.


Asunto(s)
Condrocitos , MicroARNs , Condrocitos/metabolismo , Tiram , Glucógeno Sintasa Quinasa 3 beta/metabolismo , MicroARNs/genética , ARN Mensajero/genética
2.
Phys Med Biol ; 69(8)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38471170

RESUMEN

Objective.Recently, deep learning techniques have found extensive application in accurate and automated segmentation of tumor regions. However, owing to the variety of tumor shapes, complex types, and unpredictability of spatial distribution, tumor segmentation still faces major challenges. Taking cues from the deep supervision and adversarial learning, we have devised a cascade-based methodology incorporating multi-scale adversarial learning and difficult-region supervision learning in this study to tackle these challenges.Approach.Overall, the method adheres to a coarse-to-fine strategy, first roughly locating the target region, and then refining the target object with multi-stage cascaded binary segmentation which converts complex multi-class segmentation problems into multiple simpler binary segmentation problems. In addition, a multi-scale adversarial learning difficult supervised UNet (MSALDS-UNet) is proposed as our model for fine-segmentation, which applies multiple discriminators along the decoding path of the segmentation network to implement multi-scale adversarial learning, thereby enhancing the accuracy of network segmentation. Meanwhile, in MSALDS-UNet, we introduce a difficult region supervision loss to effectively utilize structural information for segmenting difficult-to-distinguish areas, such as blurry boundary areas.Main results.A thorough validation of three independent public databases (KiTS21, MSD's Brain and Pancreas datasets) shows that our model achieves satisfactory results for tumor segmentation in terms of key evaluation metrics including dice similarity coefficient, Jaccard similarity coefficient, and HD95.Significance.This paper introduces a cascade approach that combines multi-scale adversarial learning and difficult supervision to achieve precise tumor segmentation. It confirms that the combination can improve the segmentation performance, especially for small objects (our codes are publicly availabled onhttps://zhengshenhai.github.io/).


Asunto(s)
Encéfalo , Señales (Psicología) , Benchmarking , Bases de Datos Factuales , Páncreas , Procesamiento de Imagen Asistido por Computador
3.
BMC Pregnancy Childbirth ; 24(1): 191, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468220

RESUMEN

BACKGROUND: Timely, appropriate, and equitable access to quality healthcare during pregnancy is proven to contribute to better health outcomes of birthing individuals and infants following birth. Equity is conceptualized as the absence of differences in healthcare access and quality among population groups. Healthcare policies are guides for front-line practices, and despite merits of contemporary policies striving to foster equitable healthcare, inequities persist. The purpose of this umbrella review is to identify prenatal healthcare practices, summarize how equities/inequities are reported in relation to patient experiences or health outcomes when accessing or using services, and collate equity reporting characteristics. METHODS: For this umbrella review, six electronic databases were searched (Medline, EMBASE, APA PsychInfo, CINAHL, International Bibliography of the Social Sciences, and Cochrane Library). Included studies were extracted for publication and study characteristics, equity reporting, primary outcomes (prenatal care influenced by equity/inequity) and secondary outcomes (infant health influenced by equity/inequity during pregnancy). Data was analyzed deductively using the PROGRESS-Plus equity framework and by summative content analysis for equity reporting characteristics. The included articles were assessed for quality using the Risk of Bias Assessment Tool for Systematic Reviews. RESULTS: The search identified 8065 articles and 236 underwent full-text screening. Of the 236, 68 systematic reviews were included with first authors representing 20 different countries. The population focus of included studies ranged across prenatal only (n = 14), perinatal (n = 25), maternal (n = 2), maternal and child (n = 19), and a general population (n = 8). Barriers to equity in prenatal care included travel and financial burden, culturally insensitive practices that deterred care engagement and continuity, and discriminatory behaviour that reduced care access and satisfaction. Facilitators to achieve equity included innovations such as community health workers, home visitation programs, conditional cash transfer programs, virtual care, and cross-cultural training, to enhance patient experiences and increase their access to, and use of health services. There was overlap across PROGRESS-Plus factors. CONCLUSIONS: This umbrella review collated inequities present in prenatal healthcare services, globally. Further, this synthesis contributes to future solution and action-oriented research and practice by assembling evidence-informed opportunities, innovations, and approaches that may foster equitable prenatal health services to all members of diverse communities.


Asunto(s)
Atención a la Salud , Calidad de la Atención de Salud , Embarazo , Femenino , Lactante , Niño , Humanos , Revisiones Sistemáticas como Asunto , Atención Prenatal
4.
Metabolism ; 154: 155818, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369056

RESUMEN

BACKGROUND: Cardiac glucose oxidation is decreased in heart failure with reduced ejection fraction (HFrEF), contributing to a decrease in myocardial ATP production. In contrast, circulating ketones and cardiac ketone oxidation are increased in HFrEF. Since ketones compete with glucose as a fuel source, we aimed to determine whether increasing ketone concentration both chronically with the SGLT2 inhibitor, dapagliflozin, or acutely in the perfusate has detrimental effects on cardiac glucose oxidation in HFrEF, and what effect this has on cardiac ATP production. METHODS: 8-week-old male C57BL6/N mice underwent sham or transverse aortic constriction (TAC) surgery to induce HFrEF over 3 weeks, after which TAC mice were randomized to treatment with either vehicle or the SGLT2 inhibitor, dapagliflozin (DAPA), for 4 weeks (raises blood ketones). Cardiac function was assessed by echocardiography. Cardiac energy metabolism was measured in isolated working hearts perfused with 5 mM glucose, 0.8 mM palmitate, and either 0.2 mM or 0.6 mM ß-hydroxybutyrate (ßOHB). RESULTS: TAC hearts had significantly decreased %EF compared to sham hearts, with no effect of DAPA. Glucose oxidation was significantly decreased in TAC hearts compared to sham hearts and did not decrease further in TAC hearts treated with high ßOHB or in TAC DAPA hearts, despite ßOHB oxidation rates increasing in both TAC vehicle and TAC DAPA hearts at high ßOHB concentrations. Rather, increasing ßOHB supply to the heart selectively decreased fatty acid oxidation rates. DAPA significantly increased ATP production at both ßOHB concentrations by increasing the contribution of glucose oxidation to ATP production. CONCLUSION: Therefore, increasing ketone concentration increases energy supply and ATP production in HFrEF without further impairing glucose oxidation.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Masculino , Ratones , Animales , Insuficiencia Cardíaca/metabolismo , Glucosa/metabolismo , Volumen Sistólico , Miocardio/metabolismo , Oxidación-Reducción , Adenosina Trifosfato/metabolismo , Cetonas/farmacología , Cetonas/metabolismo
5.
Cardiovasc Res ; 120(4): 360-371, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38193548

RESUMEN

AIMS: Heart failure with preserved ejection fraction (HFpEF) is a prevalent disease worldwide. While it is well established that alterations of cardiac energy metabolism contribute to cardiovascular pathology, the precise source of fuel used by the heart in HFpEF remains unclear. The objective of this study was to define the energy metabolic profile of the heart in HFpEF. METHODS AND RESULTS: Eight-week-old C57BL/6 male mice were subjected to a '2-Hit' HFpEF protocol [60% high-fat diet (HFD) + 0.5 g/L of Nω-nitro-L-arginine methyl ester]. Echocardiography and pressure-volume loop analysis were used for assessing cardiac function and cardiac haemodynamics, respectively. Isolated working hearts were perfused with radiolabelled energy substrates to directly measure rates of fatty acid oxidation, glucose oxidation, ketone oxidation, and glycolysis. HFpEF mice exhibited increased body weight, glucose intolerance, elevated blood pressure, diastolic dysfunction, and cardiac hypertrophy. In HFpEF hearts, insulin stimulation of glucose oxidation was significantly suppressed. This was paralleled by an increase in fatty acid oxidation rates, while cardiac ketone oxidation and glycolysis rates were comparable with healthy control hearts. The balance between glucose and fatty acid oxidation contributing to overall adenosine triphosphate (ATP) production was disrupted, where HFpEF hearts were more reliant on fatty acid as the major source of fuel for ATP production, compensating for the decrease of ATP originating from glucose oxidation. Additionally, phosphorylated pyruvate dehydrogenase levels decreased in both HFpEF mice and human patient's heart samples. CONCLUSION: In HFpEF, fatty acid oxidation dominates as the major source of cardiac ATP production at the expense of insulin-stimulated glucose oxidation.


Asunto(s)
Insuficiencia Cardíaca , Masculino , Humanos , Animales , Ratones , Adenosina Trifosfato/metabolismo , Miocardio/metabolismo , Volumen Sistólico , Ratones Endogámicos C57BL , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Cetonas
6.
J Pharmacol Exp Ther ; 388(1): 145-155, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37977817

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a major health problem with limited treatment options. Although optimizing cardiac energy metabolism is a potential approach to treating heart failure, it is poorly understood what alterations in cardiac energy metabolism actually occur in HFpEF. To determine this, we used mice in which HFpEF was induced using an obesity and hypertension HFpEF protocol for 10 weeks. Next, carvedilol, a third-generation ß-blocker and a biased agonist that exhibits agonist-like effects through ß arrestins by activating extracellular signal-regulated kinase, was used to decrease one of these parameters, namely hypertension. Heart function was evaluated by invasive pressure-volume loops and echocardiography as well as by ex vivo working heart perfusions. Glycolysis and oxidation rates of glucose, fatty acids, and ketones were measured in the isolated working hearts. The development of HFpEF was associated with a dramatic decrease in cardiac glucose oxidation rates, with a parallel increase in palmitate oxidation rates. Carvedilol treatment decreased the development of HFpEF but had no major effect on cardiac energy substrate metabolism. Carvedilol treatment did increase the expression of cardiac ß arrestin 2 and proteins involved in mitochondrial biogenesis. Decreasing bodyweight in obese HFpEF mice increased glucose oxidation and improved heart function. This suggests that the dramatic energy metabolic changes in HFpEF mice hearts are primarily due to the obesity component of the HFpEF model. SIGNIFICANCE STATEMENT: Metabolic inflexibility occurs in heart failure with preserved ejection fraction (HFpEF) mice hearts. Lowering blood pressure improves heart function in HFpEF mice with no major effect on energy metabolism. Between hypertension and obesity, the latter appears to have the major role in HFpEF cardiac energetic changes. Carvedilol increases mitochondrial biogenesis and overall energy expenditure in HFpEF hearts.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Ratones , Animales , Volumen Sistólico , Miocardio/metabolismo , Carvedilol/farmacología , Carvedilol/metabolismo , Metabolismo Energético , Obesidad/complicaciones , Obesidad/metabolismo , Hipertensión/metabolismo , Glucosa/metabolismo
7.
Basic Res Cardiol ; 119(1): 133-150, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38148348

RESUMEN

Heart failure is a prevalent disease worldwide. While it is well accepted that heart failure involves changes in myocardial energetics, what alterations that occur in fatty acid oxidation and glucose oxidation in the failing heart remains controversial. The goal of the study are to define the energy metabolic profile in heart failure induced by obesity and hypertension in aged female mice, and to attempt to lessen the severity of heart failure by stimulating myocardial glucose oxidation. 13-Month-old C57BL/6 female mice were subjected to 10 weeks of a 60% high-fat diet (HFD) with 0.5 g/L of Nω-nitro-L-arginine methyl ester (L-NAME) administered via drinking water to induce obesity and hypertension. Isolated working hearts were perfused with radiolabeled energy substrates to directly measure rates of myocardial glucose oxidation and fatty acid oxidation. Additionally, a series of mice subjected to the obesity and hypertension protocol were treated with a pyruvate dehydrogenase kinase inhibitor (PDKi) to stimulate cardiac glucose oxidation. Aged female mice subjected to the obesity and hypertension protocol had increased body weight, glucose intolerance, elevated blood pressure, cardiac hypertrophy, systolic dysfunction, and decreased survival. While fatty acid oxidation rates were not altered in the failing hearts, insulin-stimulated glucose oxidation rates were markedly impaired. PDKi treatment increased cardiac glucose oxidation in heart failure mice, which was accompanied with improved systolic function and decreased cardiac hypertrophy. The primary energy metabolic change in heart failure induced by obesity and hypertension in aged female mice is a dramatic decrease in glucose oxidation. Stimulating glucose oxidation can lessen the severity of heart failure and exert overall functional benefits.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Femenino , Animales , Ratones , Glucosa/metabolismo , Ratones Endogámicos C57BL , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Oxidación-Reducción , Cardiomegalia/metabolismo , Hipertensión/complicaciones , Obesidad/complicaciones , Ácidos Grasos/metabolismo , Metabolismo Energético
8.
Pestic Biochem Physiol ; 197: 105649, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072524

RESUMEN

Thiram is a plant fungicide, its excessive use has exceeded the required environmental standards. It causes tibial dyschondroplasia (TD) in broilers which is a common metabolic disease that affects the growth plate of tibia bone. It has been studied that many microRNAs (miRNAs) are involved in the differentiation of chondrocytes however, their specific roles and mechanisms have not been fully investigated. The selected features of tibial chondrocytes of broilers were studied in this experiment which included the expression of miR-181b-1-3p and the genes related to WIF1/Wnt/ß-catenin pathway in chondrocytes through qRT-PCR, western blot and immunofluorescence. The correlation between miR-181b-1-3p and WIF1 was determined by dual luciferase reporter gene assay whereas, the role of miR-181b-1-3p and WIF1/Wnt/ß-catenin in chondrocyte differentiation was determined by mimics and inhibitor transfection experiments. Results revealed that thiram exposure resulted in decreased expression of miR-181b-1-3p and increased expression of WIF1 in chondrocytes. A negative correlation was also observed between miR-181b-1-3p and WIF1. After overexpression of miR-181b-1-3p, the expression of ACAN, ß-catenin and Col2a1 increased but the expression of GSK-3ß decreased. It was observed that inhibition of WIF1 increased the expression of ALP, ß-catenin, Col2a1 and ACAN but decreased the expression of GSK-3ß. It is concluded that miR-181b-1-3p can reverse the inhibitory effect of thiram on cartilage proliferation and differentiation by inhibiting WIF1 expression and activating Wnt/ß-catenin signaling pathway. This study provides a new molecular target for the early diagnosis and possible treatment of TD in broilers.


Asunto(s)
MicroARNs , Osteocondrodisplasias , Animales , Condrocitos/metabolismo , Pollos/genética , Pollos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinaria , Osteocondrodisplasias/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/farmacología , Tiram , Tibia/metabolismo , MicroARNs/genética , Proliferación Celular/genética
9.
Sci Total Environ ; 905: 167180, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37734599

RESUMEN

Changes in the soil environment caused by winter warming is affecting the carbon and nitrogen cycles of seasonal freeze-thaw farmland soil. A field experiment was conducted in a seasonal freeze-thaw farmland soil of northeast China to investigate the effects caused from different levels of warming (W1 + 1.77 °C, W2 + 0.69 °C and C + 0 °C) on soil carbon and nitrogen dynamics, microbial biomass and greenhouse gases fluxes. During the early and middle winter, the contents of all kinds of soil carbon and nitrogen (Ammonium, nitrate, total nitrogen, dissolved organic carbon, readily oxidizable organic carbon and soil organic carbon) tended to increase with the increase of warming level, while during the late winter, their contents under different temperature treatments roughly present trend of W2 ≥C > W1. Except for the late thawing period, warming increased the contents of soil microbial biomass carbon and nitrogen, during the late thawing period, with the increase of warming level, MBC and MBN decreased significantly. Warming would stimulate the release of greenhouse gases from soil. But due to the differences of soil environmental conditions in each period and soil nutrient dynamics under different treatments, which made the effects of different levels of warming on soil GHGs fluxes in different periods are different. Our study suggested that low-level warming improved the availability of soil carbon and nitrogen, increased the contents of microbial biomass and greenhouse gas emissions. However, although high-level winter warming showed a similar phenomenon in the early and middle winter to the low-level warming, during the late winter, high-level warming increased soil nutrients loss and broke the seasonal coupling relationship between crop nutrient acquisition and soil microbial nutrient supply, and even led to the adaptation of soil CO2 release to it. This is of great significance for exploring the carbon and nitrogen cycle mechanisms of global terrestrial ecosystem.


Asunto(s)
Gases de Efecto Invernadero , Nitrógeno/análisis , Suelo , Ecosistema , Carbono/análisis , Granjas , Estaciones del Año , Dióxido de Carbono/análisis , Óxido Nitroso/análisis
10.
Cardiovasc Diabetol ; 22(1): 73, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978133

RESUMEN

BACKGROUND: Cardiovascular diseases, including diabetic cardiomyopathy, are major causes of death in people with type 2 diabetes. Aldose reductase activity is enhanced in hyperglycemic conditions, leading to altered cardiac energy metabolism and deterioration of cardiac function with adverse remodeling. Because disturbances in cardiac energy metabolism can promote cardiac inefficiency, we hypothesized that aldose reductase inhibition may mitigate diabetic cardiomyopathy via normalization of cardiac energy metabolism. METHODS: Male C57BL/6J mice (8-week-old) were subjected to experimental type 2 diabetes/diabetic cardiomyopathy (high-fat diet [60% kcal from lard] for 10 weeks with a single intraperitoneal injection of streptozotocin (75 mg/kg) at 4 weeks), following which animals were randomized to treatment with either vehicle or AT-001, a next-generation aldose reductase inhibitor (40 mg/kg/day) for 3 weeks. At study completion, hearts were perfused in the isolated working mode to assess energy metabolism. RESULTS: Aldose reductase inhibition by AT-001 treatment improved diastolic function and cardiac efficiency in mice subjected to experimental type 2 diabetes. This attenuation of diabetic cardiomyopathy was associated with decreased myocardial fatty acid oxidation rates (1.15 ± 0.19 vs 0.5 ± 0.1 µmol min-1 g dry wt-1 in the presence of insulin) but no change in glucose oxidation rates compared to the control group. In addition, cardiac fibrosis and hypertrophy were also mitigated via AT-001 treatment in mice with diabetic cardiomyopathy. CONCLUSIONS: Inhibiting aldose reductase activity ameliorates diastolic dysfunction in mice with experimental type 2 diabetes, which may be due to the decline in myocardial fatty acid oxidation, indicating that treatment with AT-001 may be a novel approach to alleviate diabetic cardiomyopathy in patients with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Animales , Masculino , Ratones , Aldehído Reductasa/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/prevención & control , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Miocardio/metabolismo , Modelos Animales de Enfermedad , Distribución Aleatoria
11.
Phytopathology ; 113(1): 21-30, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35918852

RESUMEN

Southern corn rust (SCR) caused by Puccinia polysora is one of the most devastating diseases in the world. In recent years, SCR has been upgraded from a minor to a major disease around the world, including in China. However, little is known about its population genetics and structure in China. In this study, we analyzed 288 isolates collected from various localities during 2017 in seven Chinese provinces: Guangxi, Guangdong, Anhui, Hunan, Shandong, Henan, and Shaanxi. The isolates were analyzed using nine microsatellite markers. The population structure, genetic diversity, and reproduction mode of P. polysora were investigated based on genotype data. Strong genotypic diversity was detected and clonal reproduction was dominant. The populations collected from the pathogen's winter-reproductive regions harbored more genotypes than those collected from the pathogen's epidemic regions. The spatial differences in genotypic richness, and evenness among the populations were significant, and showed a decreasing trend from south to north. Most isolates were clustered into two clonal groups. Two high-frequency multilocus genotypes (MLGs), MLG1 and MLG2, were widely distributed in all populations. Our analyses confirmed that P. polysora employed clone dispersal from the pathogen's winter-reproductive regions to the pathogen's epidemic regions, and in addition to the sources from the pathogen's winter-reproductive regions, the pathogen in Anhui and Hunan might also have other sources from areas such as Taiwan, China, or/and Southeast Asia, and the pathogen went through a genetic bottleneck during its dispersal. These findings provide initial insights into the reproduction mode and dispersal pathways of P. polysora in China.


Asunto(s)
Basidiomycota , Variación Genética , China , Enfermedades de las Plantas/genética , Basidiomycota/genética , Genotipo , Zea mays
12.
J Fungi (Basel) ; 8(7)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35887461

RESUMEN

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important fungal diseases affecting wheat (Triticum aestivum L.) worldwide. In this study, the genetic diversity and population structure of Pst isolates were analyzed using 15 microsatellite markers. Isolates were collected from five wheat cultivars with different levels of resistance from Yanting county and Fucheng district, Mianyang city, Sichuan province, China. The aim of this study was to investigate whether Pst populations are differentiated by wheat genotype or geographic origin. Seventy-six multilocus genotypes (MLGs) were identified from all 289 single uredinial isolates. In general, the genotypic diversity of Pst populations from five wheat cultivars in Fucheng was higher than that in Yanting. In addition, the genetic diversity was highest in the Pst populations from Mianmai 367, a cultivar considered to be highly resistant. The unweighted pair group method with arithmetic mean (UPGMA) phylogenetic tree, Bayesian clustering analysis, and minimum spanning network for the MLGs revealed two major genetic clusters based on geographical location. Greater differentiation was observed between the populations from the two sampling locations than between the populations from different hosts in the same location. The results suggest that geographic and environmental differences could partially explain the genetic differentiation of Pst more than wheat genotype. This study provides novel insight into the interactions between Pst populations and their hosts. The results could be helpful in designing more effective management strategies for stripe rust in wheat production.

13.
Rev Sci Instrum ; 93(5): 053906, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35649754

RESUMEN

The first results on the activation process and mechanisms of novel quinary alloy Ti-Zr-V-Hf-Nb non-evaporable getter (NEG) film coatings with copper substrates were presented. About 1.075 µm of Ti-Zr-V-Hf-Nb NEG film coating was deposited on the copper substrates by using the DC sputtering method. The NEG activation at 100, 150, and 180 °C, respectively, for 2 h was in situ characterized by x-ray photoelectron spectroscopy (XPS). The as-deposited NEG film mainly comprised the high valence state metallic oxides and the sub-oxides, as well as a small number of metals. The in situ XPS studies indicated that the concentrations of the high-oxidized states of Ti, Zr, V, Hf, and Nb gradually decreased and that of the lower valence metallic oxides and metallic states increased in steps, when the activation temperature increased from 100 to 180 °C. This outcome manifested that these novel quinary alloy Ti-Zr-V-Hf-Nb NEG film coatings could be activated and used for producing ultra-high vacuum.

14.
Asia Pac J Oncol Nurs ; 9(8): 100065, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35634133

RESUMEN

Objective: To prospectively explore the efficacy of 125I seed implantation on quality of life and pain relief in cancer patient. Methods: Consecutive cancer patients who underwent 125I seed implantation in three centers in China between October 1, 2020 and March 31, 2021, were assessed. The Functional Assessment of Cancer Therapy and Brief Pain Inventory were used to evaluate patients' quality of life and pain relief on the day before, 1 week, 1 month, and 3 months after seed implantation. Results: A total of 104 cancer patients were enroled. Total score of quality of life was not statistically different 3 months after seed implantation compared with before implantation, while patients' quality of life was worse one week after seed implantation but then recovered. A total of 43 (41.3%) patients had pain before seed implantation, of which 16 (37.2%) patients had severe pain and 27 (62.8%) had mild-to-moderate pain. In patients with severe pain, the worst pain scores decreased significantly 3 months after implantation. In patients with mild-to-moderate pain, pain severity and pain interference score increased significantly after implantation compared with pre-implantation. Compared with pain before implantation, patients' quality of life of patients without pain was higher. Conclusions: 125I seed implantation maintains the quality of life of patients within 3 months. For patients with severe pain, seed implantation has obvious pain relief, which improves the quality of life of the patients. Nurses should provide personalized guidance for patients with different degrees of pain.

15.
Materials (Basel) ; 15(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35629476

RESUMEN

The water corrosion of tungsten as a target material can affect the safe operation of accelerator-driven neutron source. This paper reported the corrosion behaviors of tungsten in ultrapure water and tap water for 7, 14, 21, 30 and 60 days. Moreover, ICP-MS, XRD, XPS, SEM-EDS and LSCM were used to analyze the components in solutions, crystalline structures, chemical compositions and surface morphologies. It was found that the dissolution of tungsten, due to corrosion, reached its maximum between 30 days and 60 days in both solutions. The cube-shape substance, CaWO4, was the main corrosion product after tungsten in tap water. The tungsten oxide was changed from WO3 to WO2 during the corrosion of tungsten in ultrapure water. Compared with tungsten in ultrapure water, tungsten in tap water had its surface completely destroyed, with a dense diamond shape. Therefore, based on the analysis from this study, the corrosion mechanisms of tungsten in ultrapure and tap water were revealed.

16.
Int J Food Sci Nutr ; 73(5): 588-599, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35291895

RESUMEN

The purpose of this article was to assess the existing systematic reviews and meta-analyses for the association between vitamin C intake and multiple health outcomes. A total of 76 meta-analyses (51 papers) of randomised controlled trials and observational studies with 63 unique health outcomes were identified. Dose-response analysis showed that vitamin C intake was associated with reduced risk of all-cause mortality, cardiovascular disease (CVD), oesophageal cancer, gastric cancer, cervical cancer and lung cancer with an increment of 50-100 mg per day. Beneficial associations were also identified for respiratory, neurological, ophthalmologic, musculoskeletal, renal and dental outcomes. Harmful associations were found for breast cancer and kidney stones for vitamin C supplement intake. The benefits of vitamin C intake outweigh the disadvantages for a range of health outcomes. However, the recommendation of vitamin C supplements needs to be cautious. More prospective studies and well-designed randomised controlled trials (RCTs) are needed.


Asunto(s)
Ácido Ascórbico , Enfermedades Cardiovasculares , Enfermedades Cardiovasculares/prevención & control , Suplementos Dietéticos , Humanos , Metaanálisis como Asunto , Estado Nutricional , Revisiones Sistemáticas como Asunto
17.
Toxicology ; 469: 153136, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35202761

RESUMEN

Heavy metal pollution not only poses a serious threat to both animal growth and public health, but also to aquatic life. Mitochondria are the first target sites for a variety of heavy metals, and recently great attention has been made on the mechanisms of toxicity of heavy metals on mitochondria. The underlying molecular mechanisms of heavy metals that may induce abnormal mitochondrial functions combined with different other environmental pollutants in the body reached a certain level, result in stunted growth and development, abnormal physiological and biochemical changes, over expression of genes, altered behavior and series of toxicological effects including inadequate metabolism. The heavy metals alter mitochondrial membrane permeability, generate increased amount of reactive oxygen species (ROS), by changing the structure of ROS clearance enzyme (antioxidant enzymes) to inhibit its activity. Due to rapid and increased generation of ROS and decreased status of antioxidant enzymes, different environmental pollutants accumulate in the exposed organisms and lead to induction of oxidative stress on the mitochondria. The increased generation of ROS also causes damage to mitochondrial respiratory chain, oxidative phosphorylation decoupling, ATP synthesis disorders, and mitochondrial apoptosis. This review mainly expounds various molecular mechanisms and progress of mitochondrial functional damage to explore the molecular mechanisms of heavy metal damage to mitochondrial functions, which provides a basis for the treatment of heavy metal poisoning, and protects the animal and animal-derived food safety from the source.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Animales , Antioxidantes/farmacología , Contaminantes Ambientales/metabolismo , Metales Pesados/toxicidad , Mitocondrias/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
18.
Asia Pac J Public Health ; 34(4): 331-337, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35073762

RESUMEN

Whether dietary fiber intake could reduce the risk of breast cancer (BC) is still controversial. The articles related to breast cancer and dietary fiber were retrieved through PubMed and Web of Science database. Summary relative risk (RR) and attributable risk percentage (ARP) for dietary fiber intake on the development of breast cancer were calculated. Dose-response meta-analysis modeled the relationship between dietary fiber intake and breast cancer risk. A total of 10 studies were included in this study. Meta-analysis showed that dietary fiber intake was negatively associated with breast cancer (RR = 0.83). In dose-response analysis, the risk of breast cancer showed a statistically significant linear trend with increasing dietary fiber dose: when adding 10 g per day, the risk decreased by 4.7% (RR = 0.95). The ARP results demonstrated that the breast cancer dietary fiber-attributed percentage was 33.33% in Asia, which was higher than 16.28% in North America and 9.89% in Europe. In conclusion, dietary fiber intake may have a positive effect on reducing breast cancer risk, especially in high doses.


Asunto(s)
Neoplasias de la Mama , Asia , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/prevención & control , Fibras de la Dieta , Femenino , Humanos , Factores de Riesgo
19.
Cardiovasc Res ; 118(3): 686-715, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-33783483

RESUMEN

Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization, and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycaemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycaemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in diabetic patients, collectively termed as 'diabetic cardiomyopathy'. However, the factors that contribute to the development of diabetic cardiomyopathies are not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and post-translational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycaemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycaemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Resistencia a la Insulina , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/epidemiología , Corazón , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/epidemiología , Humanos , Hipoglucemiantes/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...